博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
matlab图片压缩
阅读量:6694 次
发布时间:2019-06-25

本文共 2756 字,大约阅读时间需要 9 分钟。

DCT变换

DCT又称离散余弦变换,是一种块变换方式,只使用余弦函数来表达信号,与傅里叶变换紧密相关。常用于图像数据的压缩,通过将图像分成大小相等(一般为8*8)的块,利用DCT对其进行变换,得到更加简洁的数据。因为图像像素间存在较大的空间相关性,DCT可以大大减小这些相关性,使图像能量集中在左上角区域,从而利于数据压缩。变换后得到的数据称为DCT系数。这一过程是无损的。

二维DCT变换

这里来看看二维DCT变换的公式:

这里写图片描述

c(u)和c(v)为添加的系数,主要作用为使DCT变换矩阵为正交矩阵。F(u,v)即为DCT变换系数,可以通过矩阵形式来表示:

这里写图片描述

A即为正交矩阵,通过F和A逆变换即可恢复图像数据。

下面通过一个例子来说明:

clear;clc;I = [12,23,53,16;42,16,68,45;34,62,73,26;72,15,34,28];  %数据块A = zeros(4);   %变换矩阵A,也可以通过函数dctmtx(n)求得for i = 0:3    for j = 0:3        if i == 0            a = sqrt(1/4);        else            a = sqrt(2/4);        end        A(i+1,j+1) = a*cos((j+0.5)*pi*i/4)    endendD = A*I*A';     %DCT变换D1 = dct2(I);   %matlab DCT函数进行DCT变换D2 = A'*D*A;    %DCT逆变换

这里写图片描述

由结果可以看出,D,D1方式得到的DCT系数相同,说明矩阵形式的DCT变换公式是正确的,D2的数据与原数据I相同,实现了数据恢复。

另外通过运行函数dctmtx(4)可以发现得到的变换矩阵与A完全相同。

Matlab 函数实现

matlab实现离散余弦变换有两种方法:

  1. 一种为函数dct2( ), 使用函数dct2,该函数用一个基于FFT的算法来提高当输入较大的方阵时的计算速度。
  2. 另一种为函数dctmtx( ), 使用由dctmtx函数返回的DCT变换矩阵,这种方法较适合于较小的输入方阵(例如8×8或16×16)。

1. 函数:dct2( )

实现图像的二维离散余弦变换。调用格式为: 

B = dct2(A) 
B = dct2(A,[M N]) 
B = dct2(A,M,N) 
式中A表示要变换的图像,M和N是可选参数,表示填充后的图像矩阵大小,B表示变换后得到的图像矩阵。其逆变换函数为idct2( ); 
代码如下:

I = imread('1_1.jpg');%输入灰度图像D = dct2(I);          %DCT变换D1 = idct2(D);        %逆变换subplot(1,2,1);imshow(I);subplot(1,2,2);imshow(uint8(D1));

在这里可以通过函数colormap查看变换系数D。利用不同灰度值,可以发现D中主要数据都分布在左上角。

imshow(log(abs(D)),[]);colormap(gray(8));colorbar;

2. 函数:dctmtx( )

D = dctmtx(N) 

式中D是返回N×N的DCT变换矩阵,如果矩阵A是N×N方阵,则A的DCT变换可用D×A×D’来计算。这在有时比dct2计算快,特别是对于A很大的情况。上面有提到过。

对于图像的DCT变换,这里还需用到一个函数blkproc( ),其功能为对图像分块进行DCT变换。 

blkproc( )定义如下: 
B = blkproc(A,[M N],Fun) ,A为输入图像,M*N为块大小,Fun为处理函数 
常用的方式为: 
B = blkproc(A,[8,8],’P1*x*P2’,T,T’); T为变换矩阵,P1和P2为参数,代表T*x*T’ 。

下面为应用例子:

I = imread('1_1.jpg'); %输入灰度图像I = im2double(I);D = dctmtx(8);C = blkproc(I,[8,8],'P1*x*P2',D,D');  %D'为D的转置mask1=[1 1 1 1 1 0 0 01 1 1 1 0 0 0 01 1 1 0 0 0 0 01 1 0 0 0 0 0 01 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0];mask2=[1 1 1 1 0 0 0 01 1 1 0 0 0 0 01 1 0 0 0 0 0 01 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0];mask3=[1 1 0 0 0 0 0 01 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0];X = blkproc(C,[8,8],'P1.*x',mask1);  %保留15个系数I1  = blkproc(X,[8,8],'P1*x*P2',D',D);    %重构图像X2 = blkproc(C,[8,8],'P1.*x',mask2);  %保留10个系数I2  = blkproc(X2,[8,8],'P1*x*P2',D',D);    %重构图像X3 = blkproc(C,[8,8],'P1.*x',mask3);   %保留3个系数I3  = blkproc(X3,[8,8],'P1*x*P2',D',D);    %重构图像subplot(2,4,1);imshow(I);subplot(2,4,2);imshow(I1);subplot(2,4,3);imshow(I2);subplot(2,4,4);imshow(I3);

上面代码中,通过求得图像DCT系数,利用mask等矩阵对其进行量化,保留左上角主要的系数值,对于右下角的值由于其为非常小的高频系数,量化去除后对于图像的质量影响不大,可以利用这一性质对图像进行压缩处理。

保留系数越多则图像压缩质量越好,下面比较几幅图像质量,从左到右分别为原图,mask1,mask2,mask3;

这里写图片描述

可以看到系数保留越少,则图像质量越差。

转载于:https://www.cnblogs.com/neverguveip/p/9457272.html

你可能感兴趣的文章
hibernate5.x版本org.hibernate.MappingException: Unknown entity问题
查看>>
linux每日命令(18):whereis命令
查看>>
discuz的安装
查看>>
《算术探索》(高斯) 第14目
查看>>
Python模块——hashlib
查看>>
本周学习小结(18/03 - 24/03)
查看>>
猜数游戏
查看>>
关于 MVVMLight 设计模式系列
查看>>
用 js 写一个获取随机颜色的程序
查看>>
模块化开发之Amd规范和Cmd规范
查看>>
第19件事 财务分析
查看>>
python基础===open()文件处理使用介绍
查看>>
debounce与throttle区别
查看>>
StringList 自定义快速排序
查看>>
微信开发者工具的快捷键
查看>>
appium 链接真机后,运行代码,但是APP并没有启动
查看>>
局域网发送信息
查看>>
Vector3.Dot 判断方位
查看>>
从小白起步的程序猿
查看>>
2016-5-21 letwetell Round3 (百度之星初赛,dfs序,topo,对等比数列求和的优化)
查看>>